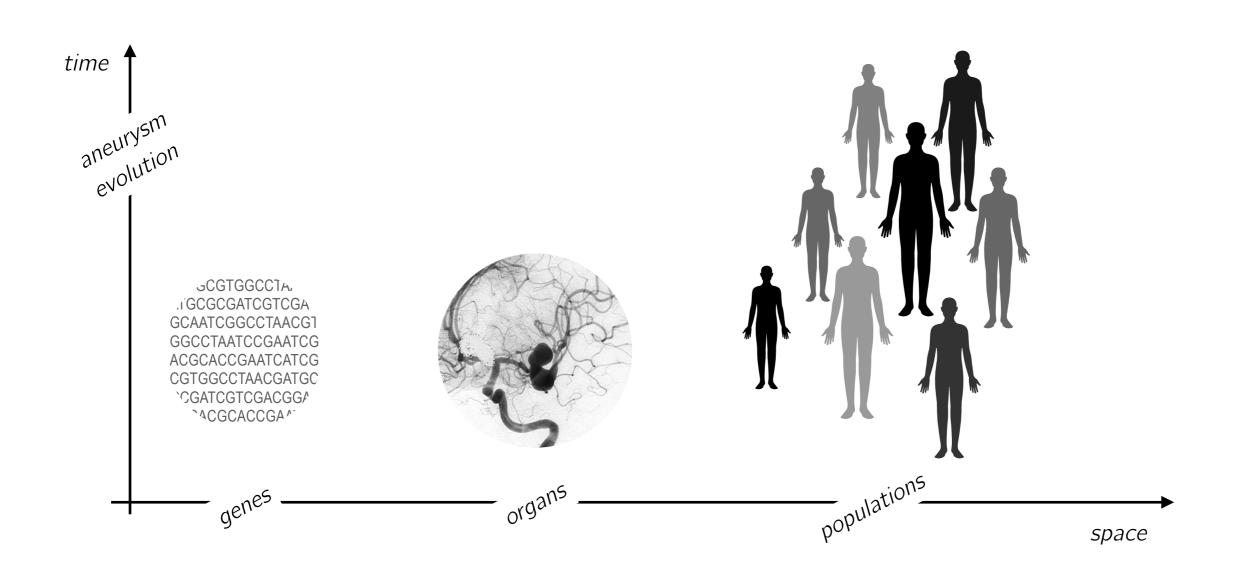
- Capturing health data
- Storing digital health data
- ✓ Integrating digital heath data
- Sharing digital health data in science
- Exploiting digital health data in care

Data integration and sharing in the context of intracranial aneurysms

Alban Gaignard

ISGC IA group premeeting session Seoul 24th of September 2025



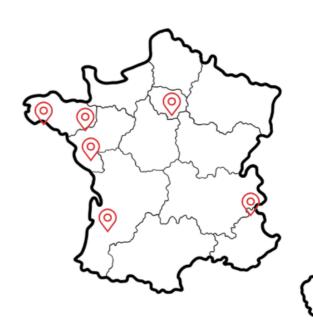
Multi-factorial disease → multi-scale data

- Inter-disciplicary efforts needed for a better understanding of the pathology
- Specific data produced at very specific scales

Neurovasc project

- ▶ Neurovasc: a national programme funded for 4 years by the french research agency to build a digital infrastructure to manage and exploit intracranial aneurysm data
 - 3 Research Institutes (Inria, Inserm, IMT Atlantique)
 - 2 Clinical Research Teams (Brest & Nantes academic hospitals)
 - 3 Universities (Bordeaux, Paris-Saclay, Nantes)

WP 1: A model of interoperable infrastructure between research and healthcare


- Task 1.1. Managing clinical data
- Task 1.2. Managing imaging data
- Task 1.3. Managing genetic data

WP 2: Interoperable datasets and predictive models for ICA diagnosis and outcomes

- Task 2.1: FAIR genomic data demonstrator
- Task 2.2: Mining healthcare circuits following ICA diagnosis
- Task 2.3: A non-additive model for global genetic-risk prediction

WP 3: Proof-of-Concept studies with digital companions

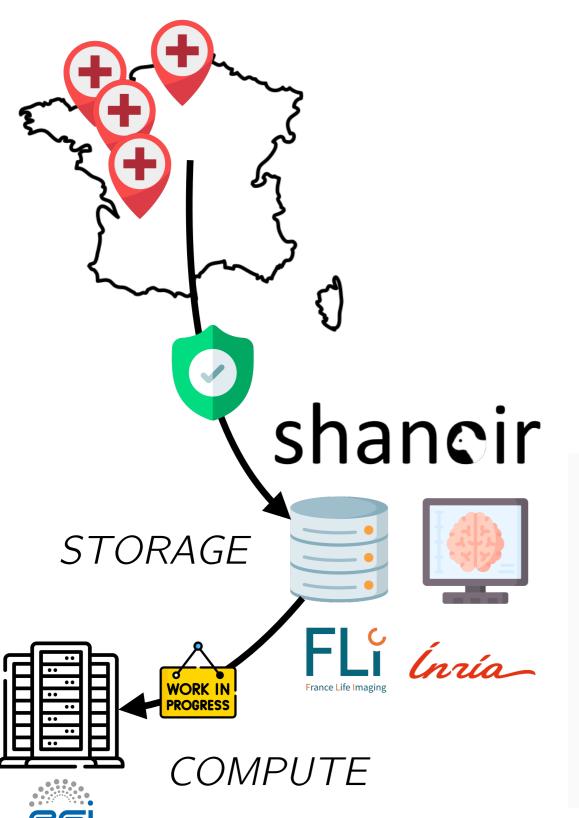
- Task 3.1: Accompanying patients with diagnosed unruptured ICA
- Task 3.2: Post-stroke prevention through mobile applications and digital monitoring

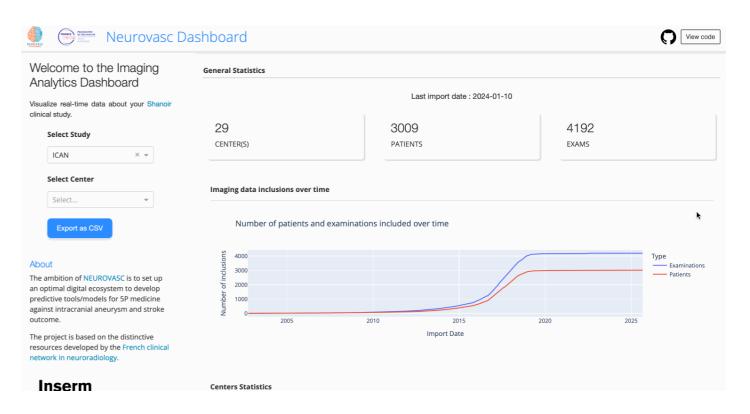
Multiple data integration sharing issues

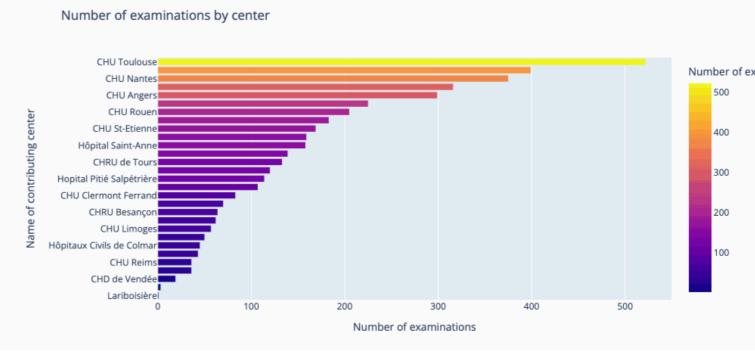
1 How to collect high-quality medical images from multiple hospitals/MRIs?

A How to interlink and query multimodal and multimodal and multiscale data while preserving privacy constraints?

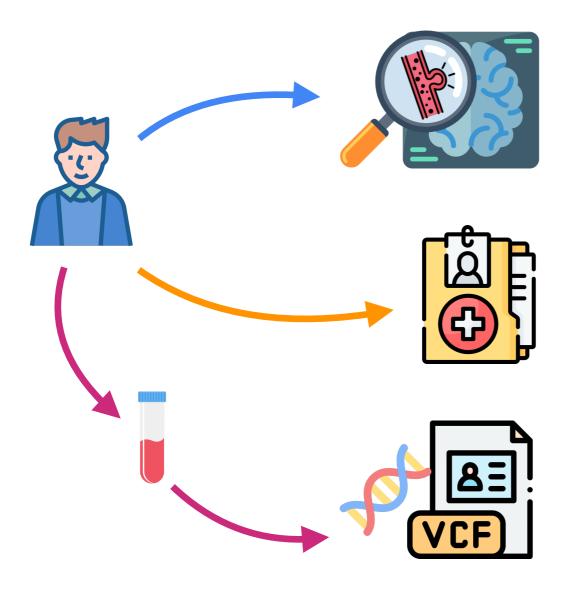
How to mine and model patient trajectories from eHR data? can we predict clinical outcomes?




1 How to collect high-quality medical images from multiple hospitals/MRIs?



Collecting multi-source medical images

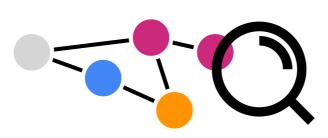


2 How to interlink and make query-able multi-modal and multi-scale data while preserving privacy constraints?

2 FAIRifying clinical & genomic data

Neuro-vascular imaging / tissues ?

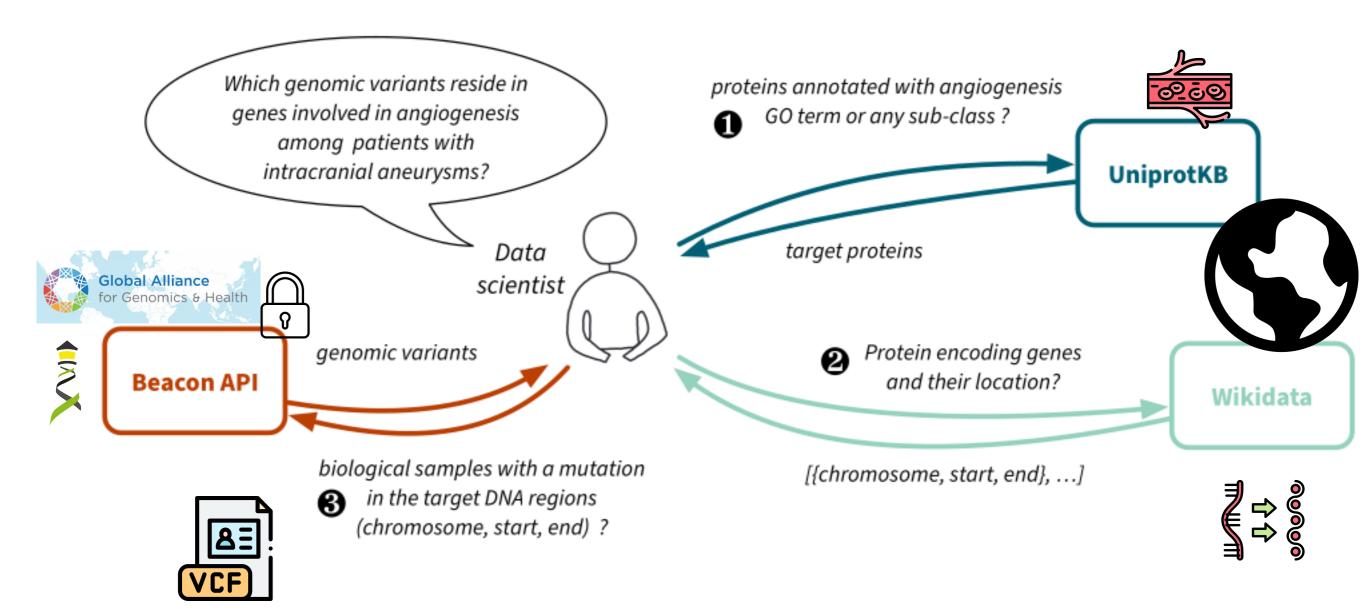
- **UBERON**
- **NCIT**


Clinical data / phenotypes ?

- **SPHN**
- **HPO**
- **DUO**

Genomic data?

- **FALDO**
- SO / GENO
- SIO


A clinical and genomic intracranial aneurysm knowledge graph

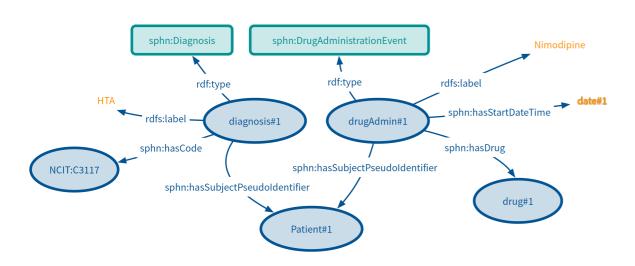
Find/Exchange phenoytypes - variants with reference terminologies!

Making genomic data interoperable with public knowledge bases

→ A single fedetared SPARQL query over 3 data sources (1 non-RDF) 3 How to mine and model patient trajectories from eHR data? can we predict clinical outcomes?

- 3 Evaluating clinical data models for patient outcome prediction
- Predict outcome of intracranial aneurysm patients after certain medical procedures or treatments.

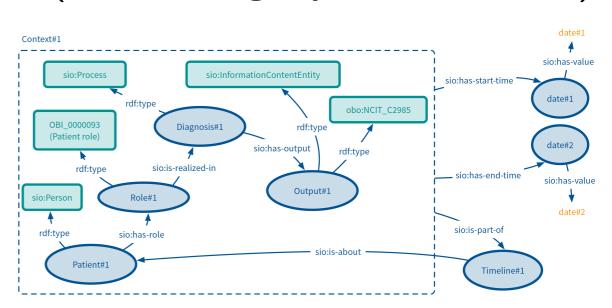
Synthetic Clinical Data


- We generated synthetic dataset that follows the distribution and the correlations of variables from real-world clinical data provided by the Nantes University Hospital.
 - Synthetic tabular data of intracranial aneurysm (10,000 individuals)
 - 22 non-temporal features (4 numerical, 6 categorical, 12 binary)
 - 8 temporal features (e.g., drug administration)

ID	Hospital stay length	Age	Gender	Entry unit	ICA	Diabetes	O2 clinic	Nimodipine	Paracetamol	Outcome
1	41.09	38	0	0	0	0	0	2023-04-08	0	0
2	21.70	58	0	1	2	0	0	2022-12-09	2022-12-09	1
3	4.63	76	0	2	2	0	0	0	2021-05-23	0
4	12.83	87	1	1	4	0	1	0	0	2
5	75.68	75	0	3	5	0	1	2020-11-23	0	1
6	41.95	59	0	2	5	0	0	2019-07-19	2019-07-26	0
7	27.54	42	0	4	5	0	0	0	0	0

Evaluating clinical data models for patient outcome prediction

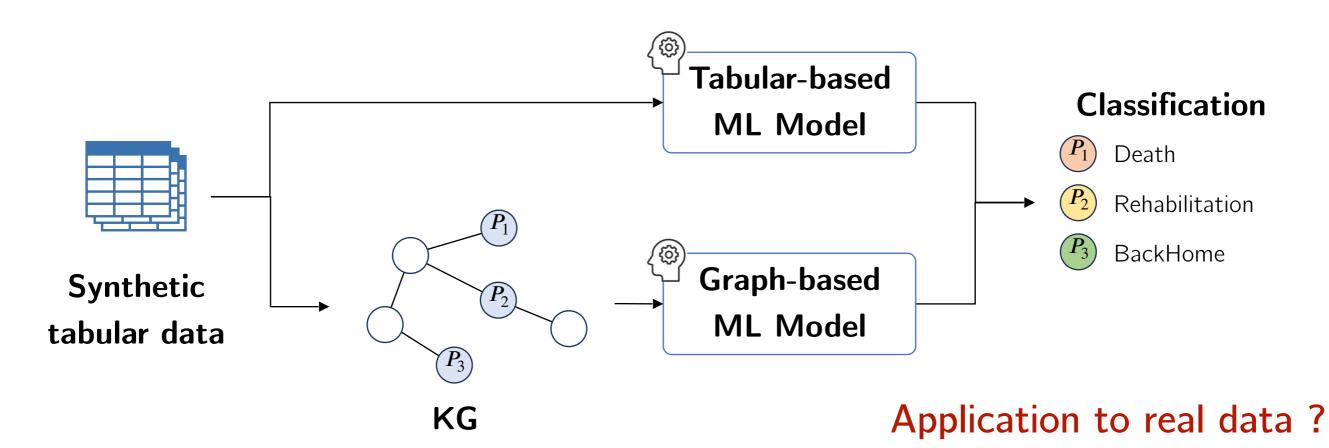
► The structure of SPHN is more **patient-centric** compared to CARE-SM, which is more **diagnosis-centric**


SPHN (Swiss Personalized Health Network)

Adopted by the five Swiss academic hospitals for better data sharing and integration

Touré, V. et al. (2023)

CARE-SM
(Care and Registry Semantic Model)


Initially designed to represent clinical data in the context of rare diseases

Kaliyaperumal, R. et al. (2022)

Predict outcome of intracranial aneurysm patients after certain medical procedures or treatments.

Key questions:

- Tabular data or Knowledge graph (KG)?
- What is the best KG structure for prediction tasks?
- How to represent temporal information in the KG?

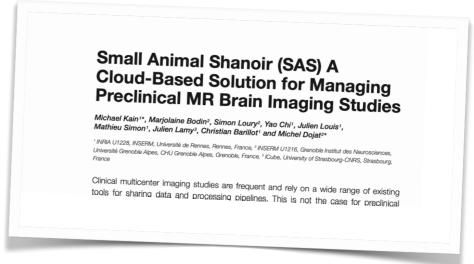
Acknowledgments

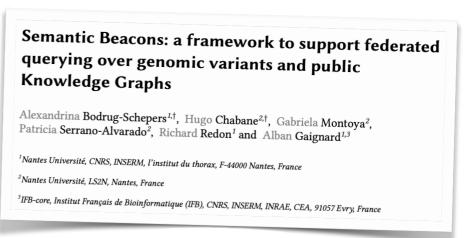
Alexandrina Bodrug

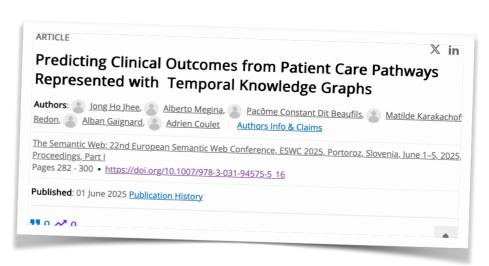
Richard Redon

Laurent Vallet

Adrien Coulet


Romain Bourcier


Matilde Karakachof


Pacôme Constant dit Beaufils

https://doi.org/10.3389/fninf.2020.00020

https://hal.science/hal-04908530v2

https://doi.org/10.1007/978-3-031-94575-5_16

Backup slides

Results 1: Patient Outcome Prediction

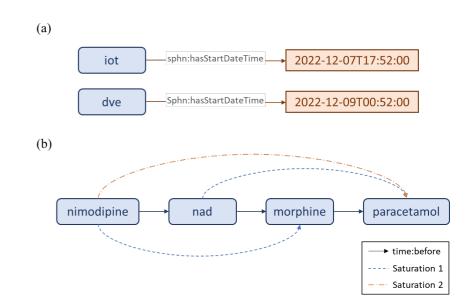
Tabular vs. TKG (temporal knowledge graphs)

Compared to tabular data, TKG showed better performance with RGCN3+lit.

Type	Model			Accuracy	AUC			
Турс		BackHome	Rehab	Death	Macro	Weighted	Accuracy	
Tabular	LR	0.63 ± 0.02	0.55 ± 0.02	0.25 ± 0.05	0.47 ± 0.03	0.55 ± 0.02	$0.56 {\pm} 0.02$	0.70 ± 0.02
	RF	0.63 ± 0.01	0.55 ± 0.02	0.28 ± 0.04	$0.49 {\pm} 0.02$	0.55 ± 0.01	$0.56 {\pm} 0.01$	0.71 ± 0.01
	NN	$0.58{\pm}0.03$	$0.48 {\pm} 0.03$	$0.26 {\pm} 0.04$	$0.44 {\pm} 0.02$	0.50 ± 0.02	$0.50 {\pm} 0.02$	$0.63{\pm}0.02$
	TransE	0.49 ± 0.04	$0.40 {\pm} 0.10$	0.02 ± 0.04	0.30 ± 0.03	0.40 ± 0.03	0.43 ± 0.02	0.50 ± 0.01
Graph (SPHN-tr)	${\rm RDF2Vec}$	$0.50 {\pm} 0.05$	0.39 ± 0.14	0.01 ± 0.02	0.30 ± 0.03	0.39 ± 0.04	$0.44 {\pm} 0.02$	$0.49{\pm}0.01$
,	RGCN3+lit	0.84±0.01	$0.76 {\pm} 0.02$	0.64±0.08	0.75±0.03	$0.75 {\pm} 0.02$	$0.78 {\pm} 0.01$	0.91 ± 0.01

Results 2: Patient Outcome Prediction

Patient-centric (SPHN) vs. Diagnosis-centric (CARE-SM)


► This experiment shows the importance of the structure of a KG.

Model							
	Back2Hom e	Rehab.	Death	Macro	Weighted	Acc.	AUC
TransE	0.510.07	0.330.16	0.020.04	0.290.04	0.370.05	0.430.02	0.500.01
RDF2Vec	0.490.04	0.420.09	0.010.03	0.300.02	0.400.02	0.440.01	0.500.02
RGCN+lit	0.830.01	0.760.02	0.660.04	0.750.02	0.780.01	0.780.01	0.910.01
TransE	0.470.04	0.440.04	0.020.03	0.310.01	0.400.01	0.430.01	0.490.01
RDF2Vec	0.510.07	0.380.11	0.000.00	0.290.02	0.390.03	0.440.02	0.500.01
RGCN+lit	0.530.08	0.300.17	0.000.00	0.280.04	0.370.05	0.440.01	0.500.02
	TransE RDF2Vec RGCN+lit TransE RDF2Vec	TransE 0.510.07 RDF2Vec 0.490.04 RGCN+lit 0.830.01 TransE 0.470.04 RDF2Vec 0.510.07	BackZholli e Rehab. TransE 0.510.07 0.330.16 RDF2Vec 0.490.04 0.420.09 RGCN+lit 0.830.01 0.760.02 TransE 0.470.04 0.440.04 RDF2Vec 0.510.07 0.380.11	TransE 0.510.07 0.330.16 0.020.04 RDF2Vec 0.490.04 0.420.09 0.010.03 RGCN+lit 0.830.01 0.760.02 0.660.04 TransE 0.470.04 0.440.04 0.020.03 RDF2Vec 0.510.07 0.380.11 0.0000.00	Model Back2Hom e Rehab. Death Macro TransE 0.510.07 0.330.16 0.020.04 0.290.04 RDF2Vec 0.490.04 0.420.09 0.010.03 0.300.02 RGCN+lit 0.830.01 0.760.02 0.660.04 0.750.02 TransE 0.470.04 0.440.04 0.020.03 0.310.01 RDF2Vec 0.510.07 0.380.11 0.000.00 0.290.02	Model Back2Hom e Rehab. Death Macro Weighted TransE 0.510.07 0.330.16 0.020.04 0.290.04 0.370.05 RDF2Vec 0.490.04 0.420.09 0.010.03 0.300.02 0.400.02 RGCN+lit 0.830.01 0.760.02 0.660.04 0.750.02 0.780.01 TransE 0.470.04 0.440.04 0.020.03 0.310.01 0.400.01 RDF2Vec 0.510.07 0.380.11 0.000.00 0.290.02 0.390.03	Model Back2Hom e Rehab. Death Macro Weighted Acc. TransE 0.510.07 0.330.16 0.020.04 0.290.04 0.370.05 0.430.02 RDF2Vec 0.490.04 0.420.09 0.010.03 0.300.02 0.400.02 0.440.01 RGCN+lit 0.830.01 0.760.02 0.660.04 0.750.02 0.780.01 0.780.01 TransE 0.470.04 0.440.04 0.020.03 0.310.01 0.400.01 0.430.01 RDF2Vec 0.510.07 0.380.11 0.000.00 0.290.02 0.390.03 0.440.02

Results 3: Patient Outcome Prediction

Non-Temporal vs. Temporal

Graphs with temporal information showed improvements in AUC compared to nontemporal graphs.

KG			Accuracy	AUC			
NG .	BackHome	Rehab	Death	Macro Weighted		Accuracy	nec
SPHN-nl	$0.64{\pm}0.03$	$0.46{\pm}0.11$	0.05 ± 0.07	$0.38{\pm}0.06$	$0.49 {\pm} 0.06$	$0.53 {\pm} 0.04$	$0.64 {\pm} 0.06$
SPHN-nt	0.75 ± 0.02	$0.65{\pm}0.02$	$0.55{\pm}0.06$	$0.65{\pm}0.02$	$0.68 {\pm} 0.01$	0.68 ± 0.01	$0.85 {\pm} 0.01$
SPHN-ts	0.83 ± 0.02	$0.76 {\pm} 0.02$	$0.66{\pm}0.08$	0.75 ± 0.03	0.78 ± 0.02	0.78 ± 0.02	$0.91 {\pm} 0.01$
SPHN-tr	$0.84 {\pm} 0.01$	$0.76 {\pm} 0.02$	$0.64 {\pm} 0.08$	$0.75{\pm}0.03$	$0.75 {\pm} 0.02$	$0.78 {\pm} 0.01$	$0.91 {\pm} 0.01$
SPHN-tsr	$0.83 {\pm} 0.02$	$0.76 {\pm} 0.02$	$0.66{\pm}0.04$	$0.75{\pm}0.02$	0.78 ± 0.01	$0.78 {\pm} 0.01$	$0.91 {\pm} 0.01$
SPHN-sat1	0.83 ± 0.01	$0.76 {\pm} 0.02$	0.64 ± 0.06	$0.75 {\pm} 0.02$	$0.78 {\pm} 0.01$	$0.78 {\pm} 0.01$	$0.91 {\pm} 0.01$
SPHN-sat2	0.83±0.01	$0.76 {\pm} 0.02$	$0.68 {\pm} 0.05$	$0.76 {\pm} 0.02$	$0.78 {\pm} 0.02$	0.78 ± 0.02	0.91±0.01